The Ohm’s Law

George Ohm has established experimentally in 1827 the following law

\[I = \frac{1}{R} V \]

V is the voltage across a conductor
I is the current thought a conductor
1/R is a proportionality factor;
R is called “resistance”
Ohm’s Law

General type electric circuit:

Given the power supply voltage V, how much current flows through the load?
Ohm’s Law and electron charge transfer rate comparison

\[I = e \times N_1 \times v \]

\[I = \frac{1}{R} V \]

- Higher \(N_1 \) (more mobile charges)
- Less resistance
Experimental observations of Ohm’s Law

\[I = \frac{1}{R} V \]

Conductor length decreases

Current increases, i.e. R decreases
Experimental observations of Ohm’s Law

\[I = \frac{1}{R} V \]

Conductor area increases

Current increases, i.e. R decreases
Resistance and resistivity

\[I = \frac{V}{R} \]

\[R = \rho \frac{L}{A} \]

\(L \) is the conductor length (along the current direction)
\(A \) is the cross-section area (with respect to the current direction)

\(\rho \) is called **resistivity** of the material;
\(\rho \) does not depend on the conductor shape; it depends on mobile charge concentration and mobility in the material.
Ohm’s law, resistance and resistivity - summary

\[I = \frac{V}{R} \]

Ohm’s law in the form of \(I(V) \): the current through the conductor = applied voltage divided by the resistance

\[V = I \times R \]

Ohm’s law in the form of \(I(V) \): the voltage needed to maintain the current \(I = \) current times resistance.

\[R = \rho \left(\frac{L}{A} \right) \]

A and L describe the geometry of the sample or wire.

The larger is the cross-section \(A \) the smaller is \(R \), the higher is the current.

The longer is the wire length \(L \), the higher is \(R \), the smaller is the current;

\[R = \rho \left(\frac{L}{A} \right) \]

\(\rho \) describes the material ability to conduct the current.

The higher is \(\rho \), the higher is \(R \) and the lower is the current
The units for resistance and resistivity

\[V = I \times R \quad \Rightarrow \quad R = \frac{V}{I} \]

Resistance \(R \) is measured in **Ohms (Ohm, \(\Omega \))

1 Ohm is the resistance of the sample that passes the current of 1A when the voltage of 1 V is applied across it.

\[R = \rho \frac{L}{A} \quad \Rightarrow \quad \rho = R \frac{A}{L} \left[\text{Ohm} \frac{m^2}{m} = \text{Ohm} \cdot m \right] \]

Resistivity is measured in Ohm - meters (Ohm·m)
Ohms’ law using conductance and conductivity

Conductance \(G = \frac{1}{R} \)

Using the conductance, the Ohm’s law can be written as

\[I = \frac{1}{R} V = G \cdot V \]

Also, from \(G = \frac{1}{R} \) and \(R = \rho \frac{L}{A} \), \(G = \frac{1}{R} = \frac{1}{\rho \frac{L}{A}} = \frac{1}{\rho} \frac{A}{L} \)

\(\sigma = \frac{1}{\rho} \) \(\sigma \) is called conductivity of the material (does not depend on the conductor shape)

Using conductivity, the conductance of the sample is given by

\(G = \sigma \frac{A}{L} \)
Ohm’s Law using conductance - summary

The expression that relates the electric current to the applied voltage is called the Ohm’s Law (established experimentally in 1827)

\[I = G \times V, \quad \text{where} \]
\[G = \sigma \frac{A}{L} \quad \text{is the conductance of the sample (wire),} \]
\[\sigma \quad \text{is the conductivity of the material} \]

\[A \text{ is the conductor cross-section area;} \]
\[L \text{ is the conductor length along the current direction} \]
The units for conductance and conductivity

\[I = G \times V \quad \Rightarrow \quad G = \frac{I}{V} \]

Conductance is measured in Siemens (S)

1 S is the conductance of the sample that passes the current of 1A when the voltage of 1 V is applied across it.

\[G = \sigma \frac{A}{L} \quad \Rightarrow \quad \sigma = G \frac{L}{A} \left[S \frac{m}{m^2} = S / m \right] \]

Conductivity is measured in Siemens per meter (S/m)
Units and Dimensions

Charge: Coulomb [C] abs (electron charge) \(e = 1.6 \times 10^{-19} \text{ C} \)

Electric current: Ampere [A]

Electric voltage: Volt [V]

Resistance: Ohm [Ohm]

Resistivity [Ohm×m]

Conductance: Siemens [S]

Conductivity: [S/m, (Ohm×m)^{-1}]
Example 1: the Ohm’s Law

What is the amount of current (I) in this circuit?

\[V = I \times R \]

\[I = \frac{V}{R} \]

\[I = \frac{12V}{3\ \Omega} = 4\ A \]

Note: the notation for the battery voltage is usually “V” or “E”
Resistivity of different materials

Wires are used to connect different components in the network; Wires have very low resistance

Resistors are used to dissipate the power and to change the voltage (potential).

<table>
<thead>
<tr>
<th>Material</th>
<th>Electric Resistivity ($\times 10^{-9}$ Ohm·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum [Al]</td>
<td>27</td>
</tr>
<tr>
<td>Aluminum Alloy</td>
<td>50</td>
</tr>
<tr>
<td>Brass</td>
<td>20 - 61</td>
</tr>
<tr>
<td>Carbon [C]</td>
<td>1.4×10^4</td>
</tr>
<tr>
<td>Copper [Cu]</td>
<td>17</td>
</tr>
<tr>
<td>Copper Alloy</td>
<td>17 - 490</td>
</tr>
<tr>
<td>Gold [Au]</td>
<td>24</td>
</tr>
<tr>
<td>Iron [Fe]</td>
<td>97</td>
</tr>
</tbody>
</table>
Example 2

Find the resistance of a wire made of copper \([\text{Cu}]\) \((\rho = 17 \times 10^{-9} \text{ Ohm-m})\). The wire is 1 m long and is 1 mm in diameter.

\[
R = \rho \times \frac{L}{A}
\]

\(L = 1 \text{ m}; \, D = 1\text{mm} = 10^{-3} \text{ m};\)

The area, \(A = \pi \times \frac{D^2}{4} = 3.14 \times (10^{-3})^2 / 4 = 7.85 \times 10^{-7} \text{ m}^2\)

The resistance
\[R = 17 \times 10^{-9} \text{ Ohm} \times \frac{1 \text{m}}{7.85 \times 10^{-7} \text{ m}^2} = 2.17 \times 10^{-2} \text{ Ohm} = 21.7 \text{ mOhm}\]

What voltage across this wire is required to have the 100 mA current through it?

\[
V = I \times R = 100 \times 10^{-3} \times 21.7 \times 10^{-3} = 0.00217 \text{ V}
\]
Example 3

Find the resistance of a **carbon resistor**, which is 1 cm long and 0.1 mm in diameter

\[
R = \rho \frac{L}{A}; \quad \rho = 1.4 \times 10^4 \times 10^{-9} \text{ Ohm*m} = 1.4 \times 10^{-5} \text{ Ohm*m} ;
\]

\[
L = 1 \text{ cm} = 10^{-2} \text{m}; \quad A = 7.85 \times 10^{-9} \text{ m}^2
\]

\[
R = 1.4 \times 10^{-5} \text{ Ohm*m} \times 10^{-2} \text{ m} / 7.85 \times 10^{-9} \text{ m}^2 = 17.8 \text{ Ohm}
\]

Compare: Cu – wire, \(R_1 = 21.7 \text{ mOhm} \approx 0.02 \text{ Ohm} \);

Carbon-resistor, \(R_2 = 17.8 \text{ Ohm} \approx 18 \text{ Ohm} \);

To have the current through the Cu-wire of 0.1 A, the required voltage across the wire, \(V_1 = I \times R_1 = 0.002 \text{ V} \);

To have the same current through the Carbon-resistor, the required voltage across the resistor is \(V_2 = I \times R_2 = 1.8 \text{ V} \);